
Scaling
Mobile QA
without Scaling
Your Team

The mobile application industry will generate over $77 billion in
2017, with almost 2 million apps in the Apple App store and 2.2
million apps available in Google Play.1 However, a study by Nielsen
found that the average smartphone user only uses about 26.7 apps
per month, forcing developers to provide stellar user experiences
to stay at the front of this very crowded market.2 Offering a high-
quality user experience and delivering the latest features quickly is
critical.

Because traditional QA practices predate the existence of mobile
apps, they aren’t tailored to the unique challenges of testing mobile
apps. These methods are often slow, clunky and poorly suited
for the fast-moving mobile app teams. As a result, many teams
with hybrid or mobile products haven’t found a QA process that
fits their product and workflow requirements, much less one that
accelerates development.

In this guide, we’ll walk through the techniques that teams can
use to scale up their mobile app testing strategy without adding
unnecessary headcount to their team (or more phones to the
drawer).

Why Scaling Mobile Testing Matters

2

1 The 2017 Mobile App Market: Statistics, Trends, and Analysis, Business2Community.com
2 So Many Apps, So Much More Time for Entertainment, Nielsen.com

2

http://www.business2community.com/mobile-apps/2017-mobile-app-market-statistics-trends-analysis-01750346#De6dADZD4TsJXdIM.97
http://www.nielsen.com/us/en/insights/news/2015/so-many-apps-so-much-more-time-for-entertainment.html

1. What Makes Mobile Testing So Challenging?
	 Application Complexity
	 Deployment Constraints
	 Device and OS Fragmentation
	
2. Scalable Mobile Testing Tools & Environments
	 Testing Environments: Are Real Devices Necessary?
	 Using Real Devices Efficiently
	 The Right Tool for the Right Job 	

3. Rethinking How Mobile Testing Happens
	 A Workflow-Integrated Testing Process
	 Designate Mobile Testing Ownership
	 Make Quality a Team Sport
	 QA Snapshot: Creating a Culture of Quality

4. Designing Strategic Mobile Test Coverage
	 Map Test Coverage to Business Value
	 Build Better Coverage, Not More Tests
	 Mobile Coverage Considerations
	 QA Snapshot: Scaling QA with Modular Testing

5. The Test Automation Endgame
	 The “Total Automation” Myth
	 A Dynamic Approach for Better Testing Automation

6. TL;DR: Key Factors in Scalable Mobile Testing
	 Three Critical Takeaways
	 Learn More about Continuous Testing for Mobile

In This Guide

3

4

7

10

13

16

19

3

Section One

What Makes
Mobile Testing
So Challenging?

Most modern QA testing processes are challenging, but mobile
application teams face unique problems that contribute to
a more complex, slower testing process. Understanding the
challenges that developers face when testing their applications
provides context needed to create testing processes that
circumvent these issues and allow them to ship features faster.

Mobile applications often feature complex user flows. They may be
marketplaces with multiple key users in every flow like Uber, which
requires testers to switch between multiple personas (or devices)
throughout the course of the test scenario. They may rely heavily on
third-party integrations or hardware components to function properly.
A testing strategy for an application like Instagram must factor in
compatibility with social media apps as well as the camera on the
device being used. These complex use cases inflate the amount of work
required to adequately test the application.

App markets like the Apple App Store and Google Play represent an
additional barrier to deploying apps into production. Every application
must be reviewed to ensure that it meets the quality standards of
these vendors, so a single overlooked bug might delay an app from
reaching customer hands. Updates and bug fixes must also be reviewed
by the distributor, which can significantly increase the time required for
updates and patches to reach users. A development team must factor
in these constraints when they consider their timeline for getting their
app to market.

Application Complexity

Deployment Constraints

51. What Makes Mobile Testing So Challenging?

Mobile applications must provide a seamless experience across a huge
range of devices and OS versions. New devices and OS updates are
introduced all the time, requiring developers to be highly responsive
to any changes to the hardware and software that may create issues
for their users. Teams must account for everything from network carrier
settings to battery charge levels. Fragmentation, the phenomenon that
occurs when some mobile users continue to use older versions of an OS or
device even after new ones are introduced, complicates manual testing.

Device and OS Fragmentation

Image Source: OpenSignal

Android Device Fragmentation

61. What Makes Mobile Testing So Challenging?

Testing every combination of device, OS and network settings creates a
huge number of test cases. This requires development teams to perform
the work of sourcing and maintaining of a growing pool of mobile devices.
These challenges represent major roadblocks for mobile app developers.
By using Continuous Testing techniques to build a flexible, fast-moving
and reliable QA process the impact of these challenges can be minimized,
giving developers more freedom to move faster.

New to Continuous Testing? Learn more here.

https://opensignal.com/reports/fragmentation-2013/
https://www.rainforestqa.com/continuous-testing/?utm_campaign=continuous-testing-manifesto&utm_medium=resources&utm_source=ebook

Section Two

Scalable Mobile
Testing Tools and
Environments

Speeding up mobile testing requires some deliberate tooling
and processes that bring bigger, better testing capacity where
you need it most. Every team’s setup will vary, but the need to
develop the right testing workflow and maintain the right test
environments are universal.

There’s no getting around the fact that developers must ensure that
mobile applications work well on user devices. The conventional
method for testing mobile apps is to run through all test cases on
devices in hand. But this is unsurprisingly a very hard practice to scale.
Testing on real devices often means sourcing and maintaining a pool of
mobile devices that reflect your users’ preferences. Running through a
full suite of mobile tests manually is a major time sink.

Device labs like Amazon Device Farm provides a scalable alternative
on-demand testing without requiring in-house device management.
Additionally, rethinking when you really need on-device testing and
when a test can be run on a virtual machine can speed up testing
significantly while keeping costs down, especially in the earlier stages
of development.

Even if you rely heavily on automation, crowdsourcing or device farms
to execute mobile tests, it’s beneficial to maintain a few key devices
in-house, focusing on device and OS combinations that are most
popular with your user base. The key to keeping real device testing
from slowing down your process or eating up budget is using them only
where the alternatives don’t work. Reserve device-in-hand testing
for critical UX testing and to cover flows that virtual devices and
device farms don’t replicate well, including interrupts (SMS, other
apps, calls, alarms) space limitations, sound recording and playback.

Testing Environments: Are Real Devices Necessary?

Using Real Devices Efficiently

82. Scalable Mobile Testing Tools and Environments

QA teams often suffer from using resources inefficiently. Take inventory
of the people, tools and processes that you’re currently using to
execute mobile tests, and think of how they can be optimized for
better results. Here is a survey of the mobile testing tools available,
and how teams can best utilize them.

The Right Tool for the Right Job

Device Farm Testing
Device farms offer access to a large pool of real mobile
devices remotely, offering the ability to test key
functionality quickly and at scale. Use device farms to
execute key functional and regression tests that are
difficult to automate, and where testing on an actual
device matters.

Device In Hand
Testing on real devices in hand provides the highest
fidelity user experience testing. Because manual device
testing is relatively slow and requires the greatest
resource investments, using this sparingly to run hardware
tests and ensure final quality before release.

Virtual Machines
Emulators can perform functional tests rapidly during
development, when you need fast feedback most. Make
virtual machines your testing workhorse to execute the
bulk of your repetitive functional tests, especially during
development when the application changes rapidly.

Testing Automation
Automated testing is the gold standard of execution
speed and long-term costs -- as long as automated test
cases aren’t brittle or flaky. Use automation to streamline
stable tests, especially in production.

92. Scalable Mobile Testing Tools and Environments

Section Three

Rethink How
Mobile Testing
Happens

Testing is frequently delayed until an application or feature
is nearing completion. But siloing QA processes at the end
of development just creates lag between the creation and
discovery of issues, reducing efficiency. Rethinking where QA
lives in your organization and how it fits into the development
workflow are the first steps to scaling up mobile testing.

The fastest mobile teams are those who have successfully pulled QA
testing out of the final stages before deployment and integrated it into
the entire development process. Scaling mobile testing without adding
time or people requires integrating more effective testing directly into
your existing workflow. Scalable mobile testing starts with continuous
integration. Unit tests that are run frequently and consistently provide
a baseline for code quality as early as possible, ensuring that minor
bugs don’t snowball into bigger ones.

Beyond using a mobile-friendly CI, ensure that your entire testing
workflow is as “pluggable” as possible. For example, being able to
get test feedback and bug alerts directly in your team’s communication
channels (like Slack) helps surface issues quickly and reduced the need
to switch between different tools and platforms to check for issues.

Many teams struggle to incorporate QA in development because
testing lacks ownership. Mobile testing in particular can be a resource-
intensive endeavor. Without a dedicated owner, it can fall short of
the mark. As more teams adopt a developer-owned testing strategy
and use more hands-off test execution methods like crowdsourced
testing and automation, they find it necessary to have have a strategic
member of the team who focuses on facilitating these processes.

Whether QA operations is a function of your DevOps team, a
product manager or a dedicated QA engineer, integrating it into your
development process strategically helps accelerate and optimize the
testing cycle, especially at scale.

A Workflow-Integrated Testing Process

Designate Mobile Testing Ownership

113. Rethink How Mobile Testing Happens

Formally testing every possible scenario is impossible, which is why
empowering every member of your team to report bugs and participate
in the quality process is critical. Dogfooding doesn’t replace a strategic
quality assurance process, but it can help surface bugs faster when
utilized in parallel with more structured testing techniques. Dogfooding
increases test coverage by emulating a wider range of real-world use
cases. This is especially useful for testing mobile applications, which
must work equally well across a variety of networks, devices, OS
configurations, and usage scenarios.

An important step in a strategically managed dogfooding practice is
to give the team a way to communicate any issues they find; having
a process in place to document any issues that are surfaced through
internal use ensures that bugs don’t slip through the cracks.

Make Quality a Team Sport

Digital art marketplace Twyla is committed to avoiding making any QA hires. In order
to ensure that their product doesn’t lose quality as a result, the quality owner (a
PM) holds weekly “Test-Fests,” where the entire company is invited to spend an hour
running tests against the latest features and updates. This increases ownership over
quality for everyone from developers and designers to sales and marketers.

“Our Test-Fests help build patience and empathy. We
have an organization where half of the team is very
technical and driven by optimization, and the other half
is very creative and driven by aesthetics. The Test-Fest
process allows the two to empathize with one another.”

 - Douglas Ferguson, VP of Engineering, Twyla

QA Snapshot: Creating a Culture of Quality

123. Rethink How Mobile Testing Happens

Section Four

Designing
Strategic Mobile
Test Coverage

The question of what should be tested is a major bottleneck
to scaling mobile development. Instead of aiming for more test
cases, aim for better test cases. The most important tests are
the ones that test areas of your application which, if broken,
would have the most significant impact on your business.

Map Test Coverage to Business Value

Build Better Coverage, Not More Tests

Focus on functionality first; a well-designed suite of 10 critical
tests will yield far better returns than a suite of 100 that leaves
significant gaps in your quality knowledge. Maintaining and running
a test suite that covers the core user flow of your product -- such as
logging in, checking out, or uploading files -- will offer greater returns
on the time and resources you invest in it than chasing down as many
edge cases as possible.

When you’re creating test cases -- especially those bound for
crowdtesting or automated execution -- try to make them as short
and modular as possible. By focusing on testing just one function per
test case, you’ll receive more deterministic feedback that is easier to
triage. Modular tests allows you to reuse common test flows in multiple
places. On the Rainforest platform, any test can be written as an
“embedded test” that can be reused as needed.

From the usage scenarios you test to the mobile devices and browsers
that you cover, fragmentation makes 100% coverage an impossible goal,
especially as your audience scales and diversifies. But by leveraging
your user data to determine what browser and OS versions your
customers rely on most can help you understand where to focus your
testing efforts the most.

144. Designing Strategic Mobile Test Coverage

The nature mobile devices requires acommodating several key testing
categories beyond those required for web app testing, including:

OS Coverage
Focus on supporting the most recent OS versions, discontinuing support
for older version as they become less important to your user base. Don’t
forget to include app upgrade testing as part of your OS coverage
strategy, as issues can be created as a result of software updates.

Device Coverage
As with OS coverage, focus on device versions that constitute the majority
of your user base. Opt to cover more screen resolutions rather than more
devices with the same resolution, to get more value out of each test run.
For manual testing, don’t waste time on basic functional tests. Instead,
focus on hardware functionality, such as battery life and cellular settings.

Connectivity Coverage
Network and Wifi connectivity can make or break user experiences, but
there are seemingly endless permutations of connectivity scenarios.
Including common connectivity snafus -- such as switching between Wifi
and LTE and back -- in your QA checklist is critical. Dogfooding provides a
scalable way to account for a greater number of connectivity edge cases.

Mobile Coverage Considerations

154. Designing Strategic Mobile Test Coverage

Temporary staffing platform Jitjatjo has a lean, distributed team with a single QA
engineer to support the entire quality process for their mobile application. Every test
case written by Jitjatjo is modular, and tests often consist of several nested modular
tests. By writing as many reusable tests as possible, Jitjatjo’s team is able to spend
less time writing and updating test cases, while creating a test suite that scales with
their product.

“Rainforest allows us to create a test that we can run
over and over. Any time we want to test that flow, we
gain the efficiencies back. Any Rainforest test case that
we write becomes extremely efficient. We’re saving 25-
30% of our QA time by leveraging Rainforest.”

 - Dominic Esposito, Head of Product, Jitjatjo

QA Snapshot: Scaling QA with Modular Testing

Section Five

The Automation
Endgame

While testing automation is an excellent tool in a QA team’s
toolkit, it’s not the magic bullet; it’s simply not flexible enough
to keep up with fast-evolving applications.

The “Total Automation” Myth

“The fetishization of automated tests as the magic
bullet that will allow you to deliver software quickly
is wrong. The opposite is the case!”

- Sally Goble, Head of Quality for the Guardian3

Testing automation is often held up as the endgame for QA. Teams
mistakenly believe that if they can just crack the automation code, all
of their quality problems will be solved. But it’s not as simple as that.
Even when implemented perfectly, automated tests are brittle and
flaky, and require a large amount of maintenance and management.

The most scalable technique for applying automation to your QA
strategy is for stable features. However, even stable features may be
subject to changes that render their automated tests unusable. The
stability of mobile apps for automation is heavily impacted by the fast-
changing mobile device market.

In addition to the demand for constant feature upgrades, OS updates,
the release of new devices and other “environmental” factors make
every mobile app test challenging to automate. While stable automated
tests can theoretically be used to quickly and repeatedly execute tests
without additional cost, the dynamic nature of the landscape of mobile
devices and OS makes stability a continually shifting target.

3 Sally Goble, “So What Do You Do If You Don’t Do Testing?!,” PIPELINE Conference 2016

175. The Automation Endgame

https://vimeo.com/162635477

Automation should be used as one testing tool that can help speed up
-- but not entirely replace -- a comprehensive QA execution strategy.
Treating automation as the final goal in a test’s lifecycle can create a
backlog of automated tests that quickly become brittle and unreliable.

Anticipate Breakage
Automated tests break -- but understanding the most common reasons
for breakage will help you spot and get ahead of issues. There are
several common breakage scenarios that a recent study4 suggests
developers must look out for. Keep these in mind when considering your
automation strategy:

•	 Element Locators-based Breakage
•	 Value-based Breakage
•	 Page Reloading

Plan for Manual Testing “Rollbacks”
Rather than seeing the road to automation as a one-way street, it
should be seen as one type within an ecosystem of testing types
for different scenarios. By anticipating that automated tests maybe
need to be occasionally “rolled back” to manual testing methods, you

A Dynamic Approach for Better Testing Automation

Tests and features are
stable; automate tests

Tests are breaking or
features changing; revert

to manual execution

Automation

Manual

can keep your test suite
healthier and more reliable
overall. Leveraging a rapid-
feedback crowdsourced
testing solution to execute
these tests that are not
quite ready for automation
helps keeps things running
smoothly and quickly.

•	 User Session Times
•	 Pop-up Windows
•	 Timing

4 Mouna Hammoudi; Gregg Rothermel; Paolo Tonella, “Why Do Record/Replay Tests of Web Applications
Break?” 2016 IEEE Internation Conference on Software Testing, Verification and Validation (ICST)

185. The Automation Endgame

http://ieeexplore.ieee.org/document/7515470/
http://ieeexplore.ieee.org/document/7515470/

Section Six

TL;DR:
Key Factors in
Scaling Mobile
App Testing

1. Rethink Your Existing Resources
QA teams offer suffer from using resources inefficiently. Take
inventory of the people, tools and processes that you’re currently
using to do testing, and think of how they can be optimized for
better results.

2. Start with a Sprint But Plan for the Marathon
Scaling mobile testing processes requires a proactive, rather than
reactive approach. Whenever possible, use testing methods that
allow you to reduce the amount of hands-on time you need to
spend on testing in the long run.

3. If You Can Automate or Crowdsource It -- Do It
Do whatever you can to avoid doing things manually if you don’t
have to. The more you can leverage testing accelerators like
automation and crowdsourcing, the more you’ll be able to scale up
mobile QA.

Three Critical Takeaways

Learn More about Continuous Testing for Mobile

This guide was developed using the principles outlined in the
Continuous Testing Manifesto. This manifesto outlines the core
factors that any development team must follow in order to develop
a strategic QA process that keeps pace with agile and continuous
development methods.

Read the Continuous Testing Manifesto to learn how to
accelerate and scale your QA strategy effectively.

206. TL;DR: Key Factors in Scaling Mobile App Testing

https://www.rainforestqa.com/continuous-testing/?utm_campaign=continuous-testing-manifesto&utm_medium=resources&utm_source=ebook
https://www.rainforestqa.com/continuous-testing/?utm_campaign=continuous-testing-manifesto&utm_medium=resources&utm_source=ebook
https://www.rainforestqa.com/continuous-testing/?utm_campaign=continuous-testing-manifesto&utm_medium=resources&utm_source=ebook

2 Embarcadero Center
Promenade Level, Suite R-2308
San Francisco, CA 94111

415-969-6326
www.rainforestqa.com

The mission at Rainforest QA is to make quality assurance easy
and painless for everyone. Every day thousands of our testers
help fast-moving companies figure out what is broken on their

sites and applications.

We believe that the future of software development depends
on removing roadblocks that slow the development lifecycle.
Rainforest helps customers focus on exploiting their competitive
advantage by leveraging the kind of elegant tooling that gives

small teams the ability to make an outsized impact.

https://www.rainforestqa.com?utm_campaign=&utm_medium=resources&utm_source=ebook

