
Continuous Testing
Manifesto

What is continuous testing?
Good QA enables developers to move faster, while having a consistent set
of checks for the work they do. This holds them to a standard for quality,
but frees them from having to manually check. Though teams can improve
software quality using techniques such as pair programming or code-
reviews, bugs will always slip through.

QA is a service to the development organization and should always be as
lightweight as is practical. A QA strategy should continually strive for:

•	 Faster QA results
•	 More accurate QA results
•	 Fewer false positives
•	 More actionable results

The Continuous Testing Manifesto

The Continuous Testing Manifesto was developed to help your team ship
higher quality software, faster by providing guidelines for what should be
important in a QA process and what shouldn’t.

This guide outlines each of the 8 pillars of continuous testing, with
recommendations for how teams can start implementing them to the
greatest effect.

22

22 3

The Continuous Testing Manifesto

Modular Testing
Start with small, manageable chunks– aim for a
modular system.

Rightsize Your Approach
Good processes don’t test everything; they take
a balanced approach.

Measure to Improve
If you don’t measure results, you won’t be able
to show improvement.

Shift Left
The earlier you can start testing, the easier most
issues are to fix.

Unit Test
Enable fast feedback, along with super-specific
error reporting.

Version Control
Keep your tests close to your developer
workflow and create a record of tests.

Continuous Integration
Create a safety valve for quality as early as
possible.

Pluggable
Integrate QA with development tooling to keep
pace with development process.

1.

2.

3.

4.

5.

6.

7.

8.

4

Make your tests as composable as possible by working out
commonalities in your suite.

Most of the time, the common parts will be built upon to allow you to get in to the
right state for your application. Avoid copy-pasting test steps — aim for a modular
system.This applies for both automated and manual test suites. If using automation,
make sure to have a common library of states you can reuse to get into the correct
state. If using manual testing, you will need to find a test case management system
that supports composable tests.

If starting from scratch with a new process, start with small, manageable chunks. Build
your test suite in the following order for greatest effect:

Smoke tests
Covering the top three to five flows through your application. An example of an
e-commerce site would be: login, sign up, checkout. Choose whatever might cause a
headline in a newspaper or an email to the CEO if it broke.

Happy path tests
These are similar, but less important. Generally they are the most common paths
through your application.

Regression tests
Bugs that people have already reported should not happen again. Add a test to your
suite — whether a unit test or not — to make sure it doesn’t.

Smoke Tests

Happy-Path Tests

Edge Cases

Most Critical

Least Critical

Easiest to Use

Most Difficult to Use

Regression Tests

1. Modular Testing

Best Practice
Edge case testing
can eat up an
almost infinite
amount of
testing resources.
Focus on edge
cases sparingly
to prevent them
from slowing
down QA.

4

Good processes don’t test everything; they take a balanced
approach. This is often counterintuitive, as it’s easy to assume that
more is always better.

It is very common to want to execute every test, as well as every combination of
browsers, or even every variant of a page. This will fast become impractical or even
unnecessary once you have a large application.

If you do not have a fixed list of devices you support, you may use common tooling
such as Google Analytics to aid you. From this, you should end up with a list of the
most devices or browsers used by your customers. Focus on the top 95% of these,
or 99% if you have a higher budget. Having an official policy on which browsers you
support can also help you here.

Make sure you revisit this at least once per quarter, as the needed coverage may
change.

Which areas of your product should you test?

The two most practical ways to decide are by looking at usage data or bugs.
Using tooling such as Amplitude, Mixpanel or similar, work out which areas of your
product are most active. These are often managed by a product team, who tracks
feature usage. By looking at the most common paths, you may focus your testing
efforts there first. If your tooling supports it, look at common flows through your
application.

Developers often use error reporting software. This is a great source to use to focus
testing efforts inside QA. Tracking defects by area of the product, developer, team
and source of spec is a good start. This will often allow you to discover patterns. Any
patterns found can guide process improvements and retrospectives with developers.

2. Rightsize Your Approach

5

Best Practice
Weight the
priority of your
bugs by browser
popularity.
Likewise, bugs on
popular devices
should be fixed
first.

Best Practice
Run these tools
in QA as well.
You can use
this to check
that things are
actually covering
what’s expected.

6

A QA process’ main aim is to help the organization ship a higher-
quality product. If you don’t measure results, you won’t be able
to show improvement. Measure the fruits of your work and the
current state of quality.

Implementing a more strategic approach to testing can have a huge impact on product
quality, but measuring exactly how your QA strategy has made a difference can be
challenging. The long-term success of any QA strategy depends on measuring change
and communicating that change to the team at large, so it’s important to measure the
right metrics.

Primary QA Metrics
Number of Bugs
One of the most direct and essential measures of QA success is the number of bugs
that reach customers. Log issues reported by (or which directly affect) customers
with as much detail as possible, including date, product area, developer and team.
Summarize this log on a weekly basis and report back to the team at the root.

Time to Fix
Tracking time-to-fix, or the amount of time between when something breaks and
when it is fixed, is a critical measure of QA health. Time-to-fix provides insight into
how effectively a development team is able to use the output from QA to triage and
resolve bugs. The easiest way to measure this is the time between a failed build and
the next passing build.

Issue Source
Want to take these key measurements to the next level? Split your issue tracking out
by source. This level of detail will help you better understand the overall quality of the
product, and identify weak areas in your process that need a boost. Examples of this
include: external (i.e., customer), internal (i.e. missed by QA), automatic (e.g., error
reporting), or test-case failures.

Secondary QA Metrics
Flakiness
Broken or unreliable tests aren’t providing useful quality feedback to your team, so
identifying poor quality tests is critical. If you’re using automated testing, make sure to
track which tests pass or fail intermittently. Tracking test failures over time will allow

3. Measure to Improve

6 7

you to identify the root cause of these failures, whether that’s poorly written tests,
human QA tester issues or test environment failures.

NPS
While NPS is a great end-measurement for your entire product, it’s a trailing indicator.
Because NPS takes a holistic view of customer satisfaction, it can be challenging to
trace fluctuations in NPS to specific quality issues. As a result, NPS can be a useful
indicator of overall quality, but it shouldn’t be considered your primary measurement
for the success of your QA strategy.

Test Coverage
Test coverage is one of the most popular measures of QA health, but it can be misleading
and even dangerous if misunderstood. Test coverage by itself is not a measure of the
quality or thoroughness of those tests. By relying too heavily on test coverage, teams
can easily throw their effort into chasing down endless edge cases or overtesting
features that aren’t mission-critical.

Use test coverage to work out which areas are being completely untested and to
determine where your team should focus their efforts most effectively.

The Key to Measuring QA Effectively
The measurements you use will change as your product evolves; make sure to regularly
evaluate the metrics you’re using to measure QA success and product quality. Refining
and reevaluating how you measure your QA process and output is an important
component of ensuring that your team continually hits a high bar for product quality,
especially as your organization goes through periods of growth.

Best Practice
Note that there
are no good
leading indicators
for production
quality,
only trailing
indicators.

8

Testing earlier surfaces errors more quickly, tightening the
feedback loop between QA and development. Shortening the
entire development cycle brings other benefits too. A major one is
reducing the risk of shipping the wrong thing, as you get feedback
from users quicker.

Traditionally, QA gets involved later in the software development lifecycle. But slower
feedback cycles create distance from the problem. Developers become forgetful
and shift to other tasks, losing context. Additionally, code can change under them,
complicating the process of fixing the issue.

Keep in mind that shorter release cycles aren’t always ideal. A few potential
reasons to avoid releasing more frequently include:

•	 Regulatory issues around changes.
•	 Shipping embedded or on-premise software.
•	 Having customers that are highly averse to changes.

How to Start QA Earlier in Development

Pull Request-based development combined with automatic environment creation.
Every pull request automatically has its own environment setup. This can be home-
rolled, or provided by an external service. This allows human-powered QA, or
automated integration tests, earlier access to changes in the SDLC. Setting this up can
be a pain, as following good dev/ops practices are a prerequisite.

Generally, manual QA by non-developers isn’t practical before pushing to a pull-
request. This is due to speed and cost of the resources needed; developers are fast,
expensive; manual QA can be slow. Automation helps solve this, if used correctly, as it
may be executed on a developer’s machine. This allows developers to get feedback as
early as possible in the SDLC, while coding. They still have context around the errors
as they occur, which makes fixing them faster.

Many teams are now “shifting left,” and starting their QA process earlier in the
development cycle. But in most cases shift left testing is confined to unit testing alone.
While unit testing is a core component of a continuous testing strategy, teams that
want to optimize for speed and quality should shift functional testing left as well.

Best Practice
SaaS services for
PR-based dev
include:
•	 Heroku Review

apps
•	 Runnable

Best Practice
Leverage tagging
of tests to allow
developers to run
subsets effectively,
allowing for even
faster pre-push
testing.

4. Shift Left

8 9

While unit testing isn’t usually done by QA, it is a great way to
improve your product’s quality. Although this takes effort, it will
start paying dividends as soon as you have more than one developer
or a non-trivial product.

Unit testing enables fast feedback, along with super-specific error reporting. Having
good tests enables your developers to be more brutal with code changes, yet still be
confident in the results.

On a non-trivial project or a non-trivial amount of developers working on the same
codebase, unit-testing becomes essential to keep moving fast. Why? Developers
will have to change things they didn’t write and don’t understand. Figuring out what
might break without large amounts of risk, research or experience is hard.

To get greatest leverage from your unit tests, run them in the following order:

•	 The tests for files changed.
•	 The entire feature changed. Structure or tag tests by feature to help here.
•	 All tests. Usually this should be for every push and run via CI only, due to speed.

5. Unit Testing

10

Version control brings advantages to manual and automated tests
alike. Keep tests close to or within your developer workflow, along
with the product’s code.

While version control use is the de facto standard within dev teams, and more recently ops,
it’s much less common within QA teams. This shouldn’t be the case.

The Benefits of Version Control
1. Knowledge of what the expected behavior is for that code.
Version control of test cases means that you’ll always be able to roll back to the test case
versions that fit the version of the code you’re working with.

2. Ability to review and accept tests using standard code-review processes.
Code review saves time, reduces bugs and helps keep the team on the same page. Those
benefits translate to writing tests just as well as they do for writing code.

3. A historical log of test cases and how they change over time
Version control can also be a useful tool for gauging the progress of your test coverage and
overall QA quality. For teams that want to strengthen their QA metrics measurement, version

control creates a record of how tests have changed and evolved alongside the application.

Applying Version Control to Your QA Process
Applying the best practices for version control should be relatively straightforward if you’re
already using some form of it for your development team.

Use a Trackable Test Management System
Opt for test repositories and management systems that support editing and archiving. Even if
tests are executed manually, make an effort to document how they’re executed with every test
run. Don’t just overwrite or delete old test cases — archive them. This allows you to easily pull
up older versions of tests if you need to roll back a feature version.

Test Early & Often
QA version control works best when it stays close to development. Shift left and test frequently,
updating your tests as often as needed to stay in sync with the application’s functionality. A
modular test writing system can help you keep your test suite up-to-date without investing too
much time in rewriting tests.

Keep Tests Short and Precise
Test cases that are focused on checking a single interaction are critical to successful version
control. These granular tests allow you to pinpoint where the application or feature is breaking
quickly and — in the case of outdated tests — update test flows easily.

Best Practice
Great QA
processes are
always tracked in
a version control
system, such as
Git, Mercurial, or
Subversion.

6. Version Control

10 11

The primary benefit of CI is not speed, but consistency. Continuous
Integration provides a safety valve for quality as early as possible in
the development process.

Good QA process is always part of a wider Continuous Integration (CI) process. Verifying your
work regularly with an automated build helps catch bugs quickly, before they can snowball into
larger issues. As a result, less time needs to be spent on testing overall. Each release, whether
manual or automated, should be automatically run and reported on.

Maintaining an automated test suite is the best option for developing a scalable CI process.
Human-based testing often can’t scale to your needs, so integration may become a bottleneck.
Further, if things aren’t automated, they’ll be missed.

Early Detection is the Best Prevention
The earlier you catch bugs, the faster you resolve them and the more cost-effective your QA
process can be. To keep your time-to-fix as low as possible and releases running smoothly,
shift testing “left” and aim to identify bugs as early as possible. A key part of “shifting left” is
implementing (and optimizing) a continuous integration process. With a range of continuous
integration server apps available, your team can stay up-to-date on the status of continuous
integration builds right from their favorite Slack channel.

7. Continuous Integration

12

Modern QA processes must integrate with your development
tooling. In order to keep up with fast-moving development cycles,
QA must be able to work within your coding process.

Your QA process should be “pluggable,” or easily integrated into your larger development
workflow. These three integration types allow for easy, deep integration into your process:

Bug tracker integration
Integrating your QA process with a bug tracking tool enables more efficient tracking of defects
and prioritization. Also, it gets the right information to developers fast. Make sure your process
includes things like state, screenshots and logs (HTTP, server, and console).

Integrate in to your CI
Even for manual processes you should block and wait for results. For automation, it must be
runnable inside your CI system.

Have machine readable results
For example via an API. Ensure feature and or test status is available, as well as detailed results.

Why Quality Should Live Where Your Team Does
One way to remedy this is to bring QA notifications into the channels that your team already
uses to discuss product and development issues. This ensures that bug alerts stay front-and-
center for your team.

If your company communicates using a chat app like Slack, integrating bug alerts into your dev
and QA channels keeps quality higher by preventing issues from slipping through the cracks.
Some Rainforest users even have a dedicated QA channel to stay on top of functional testing
results more effectively.

8. Pluggable

Learn More about Continuous Testing

Updating your QA strategy to keep up with the fast pace of development is challenging, and it can
be a complex process. To apply the tenets of the Continuous Testing Manifesto and to develop a
testing strategy that will work well for your organization, check out the resources below:

Continuous Testing: Striking a Balance Between Quality and
Speed (featuring CircleCI)
Many teams strive to realize faster, more efficient development processes including continuous
integration and continuous delivery. But moving faster often raises questions about quality
tradeoffs. In this session, Rainforest CTO Russell Smith and CircleCI CTO Rob Zuber discuss what
teams must do to achieve a balanced approach to QA that accelerates development goals.

Continuous Testing Manifesto Deep Dive Webinar Series
In this webinar series, engineering leaders and developers from the Rainforest team dive deep
into each tenet of the Continuous Testing Manifesto, discussing how teams can get the most out
of their QA strategy and sharing tips for implementing continuous testing effectively.

Listen to this series and more on Rainforest’s BrightTalk channel:

About the Author
The Continuos Testing Manifesto was developed by Russell Smith. Russell is the
co-founder and CTO of Rainforest QA. At Rainforest, Russ has helped hundreds of
organizations implement faster, more effective QA processes using the key tenets
behind continuous testing.

About Rainforest QA
Rainforest is changing the way QA is done in an era of continuous delivery. Our on-
demand QA solution improves the customer experience by enabling development
teams to discover significantly more problems before code hits production.

Hundreds of companies including Adobe, Oracle and Solarwinds use Rainforest to
automate their QA testing process and easily integrate it with their development workflow via a
simple API. Headquartered in San Francisco, Rainforest is a 2012 Y Combinator graduate funded
by Bessemer Venture Partners and SVB Capital among others.

For more information, visit https://www.rainforestqa.com.

1312

Listen On-Demand

Listen On-Demand

https://www.rainforestqa.com/?utm_medium=resources&utm_source=ebook&utm_campaign=continuous-testing-manifesto&utm_term=
https://www.brighttalk.com/webcast/15641/309961?utm_campaign=channel-feed&utm_source=brighttalk-portal&utm_medium=web
https://www.brighttalk.com/channel/15641/rainforest-qa

